Deterministic Versus Randomized Kaczmarz Iterative Projection

نویسندگان

  • Tim Wallace
  • Ali Sekmen
چکیده

The Kaczmarz’s alternating projection method has been widely used for solving a consistent (mostly over-determined) linear system of equations Ax = b. Because of its simple iterative nature with light computation, this method was successfully applied in computerized tomography. Since tomography generates a matrix A with highly coherent rows, randomized Kaczmarz algorithm is expected to provide faster convergence as it picks a row for each iteration at random, based on a certain probability distribution. It was recently shown that picking a row at random, proportional with its norm, makes the iteration converge exponentially in expectation with a decay constant that depends on the scaled condition number of A and not the number of equations. Since Kaczmarz’s method is a subspace projection method, the convergence rate for simple Kaczmarz algorithm was developed in terms of subspace angles. This paper provides analyses of simple and randomized Kaczmarz algorithms and explain the link between them. It also propose new versions of randomization that may speed up convergence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Randomized Block Kaczmarz Method with Projection for Solving Least Squares

The Kaczmarz method is an iterative method for solving overcomplete linear systems of equations Ax = b. The randomized version of the Kaczmarz method put forth by Strohmer and Vershynin iteratively projects onto a randomly chosen solution space given by a single row of the matrix A and converges exponentially in expectation to the solution of a consistent system. In this paper we analyze two bl...

متن کامل

A Sampling Kaczmarz-Motzkin Algorithm for Linear Feasibility

We combine two iterative algorithms for solving large-scale systems of linear inequalities, the relaxation method of Agmon, Motzkin et al. and the randomized Kaczmarz method. We obtain a family of algorithms that generalize and extend both projection-based techniques. We prove several convergence results, and our computational experiments show our algorithms often outperform the original methods.

متن کامل

Kaczmarz Iterative Projection and Nonuniform Sampling with Complexity Estimates.

Kaczmarz's alternating projection method has been widely used for solving mostly over-determined linear system of equations A x = b in various fields of engineering, medical imaging, and computational science. Because of its simple iterative nature with light computation, this method was successfully applied in computerized tomography. Since tomography generates a matrix A with highly coherent ...

متن کامل

Accelerated Kaczmarz Algorithms using History Information

The Kaczmarz algorithm is a well known iterative method for solving overdetermined linear systems. Its randomized version yields provably exponential convergence in expectation. In this paper, we propose two new methods to speed up the randomized Kaczmarz algorithm by utilizing the past estimates in the iterations. The first one utilize the past estimates to get a preconditioner. The second one...

متن کامل

Two-subspace Projection Method for Coherent Overdetermined Systems

Abstract. We present a Projection onto Convex Sets (POCS) type algorithm for solving systems of linear equations. POCS methods have found many applications ranging from computer tomography to digital signal and image processing. The Kaczmarz method is one of the most popular solvers for overdetermined systems of linear equations due to its speed and simplicity. Here we introduce and analyze an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1407.5593  شماره 

صفحات  -

تاریخ انتشار 2013